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218 R. NARASIMHA AND P. DAS

We formulate and implement a new spectral method for the solution of the
Boltzmann equation, making extensive use of the theory of irreducible tensors
together with the symbolic notation of Dirac. These tools are shown to provide a
transparent organization of the algebra of the method and the efficient automation
of the associated calculations. The power of the proposed method is demonstrated by
application to the highly nonlinear problem of the infinitely strong shock. It is shown
that the distribution function can in this limit be decomposed into a singular part
corresponding to the molecular beam, which represents the supersonic side of the
shock, and a regular part, which provides the evolving ‘background’ gas and covers
the rest of velocity space. Separate governing equations for the singular and regular
parts are derived, and solved by an expansion of the latter in an infinite series of
orthogonal functions. The basis for this expansion is the same set that was used by
Burnett (Proc. Lond. math. Soc. 39, 385-430 (1935)), but is centred around the
(fixed) downstream maxwellian. This basis, because of the presence of spherical
harmonics which provide an irreducible representation of the group SO(3), lends
itself to the utilization of powerful group-theoretic tools. The present expansion, not
being about local equilibrium, does not imply any constitutive relations; instead it
reduces the Boltzmann equation to an equivalent infinite-order nonlinear dynamical
system. A solution with six modes shows encouraging convergence in the density
profile, towards a shock thickness of about 6.7 hot-side mean free paths.

1. INTRODUCTION

The purpose of this paper is two-fold. The first is to describe a spectral approach to the solution
of the Boltzmann equation, and provide enough details of its mechanics to enable application
to a variety of problems. The second is to demonstrate the power of the method by applying
it to the highly nonlinear problem of the infinitely strong shock.

The central element of a spectral method is an expansion of the unknown (in the present case
the distribution function) in a suitable basis, and the formulation of the equations governing
the coeflicients in the expansion. Expansions have a long (but not always happy) history in
kinetic theory: the evaluation of transport coefficients by the classical Chapman-Enskog
theory depended on such expansions around local equilibrium. This linear transport theory
reached a state of maturity with the work of Burnett (1935, 1936) and Chapman & Cowling
(1939), who demonstrated the advantages of using Sonine polynomials and spherical
harmonics as the basis for the expansion, the latter having been advocated more than 50 years
earlier by Maxwell (1879). The algebra involved in the use of any of these expansions has been
heavy (likened by Chapman to ‘chewing glass’, Brush 1976), and numerous efforts have been
made, at intervals, to find suitable bases or formalisms to lighten the burden (see, for example,
Grad 19494, b; Ikenberry & Truesdell 1956; Waldmann 1958). However, the failure of these
expansions to handle problems involving significant departures from equilibrium has led to a
certain disenchantment with such series methods in recent decades.

In an interesting analysis of linear transport theory, Kumar (19664, 1967) has confirmed
that the associated calculations are most efficiently carried out in the basis proposed by
Burnett, especially if use is made of the theory of irreducible tensors (of which spherical
harmonics are an example). The concept of irreducibility had played some part in earlier work
(see, for example, Wang Chang & Uhlenbeck 1952; Waldmann 1958), but Kumar’s extensive
analysis demonstrated for the first time the considerable gains that would result from a
systematic use of the concept. However, by this time the technology of computing transport
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SOLUTION OF THE BOLTZMANN EQUATION ' 219

coeflicients was under such firm control that no great need appears to have been felt for a new
approach.

Our first aim here is to show that these modern tools, with appropriate extensions, are useful
also in devising a spectral method to tackle nonlinear problems involving large departures from
equilibrium; in particular, the use of related group-theoretic ideas and of Dirac’s (1958)
concept of bra and ket spaces endow the present method with both conceptual and notational
elegance, even in strongly nonlinear problems. However, instead of describing the technique
in isolation, we demonstrate its power by implementing it in a special case, partly to
emphasize how the success of such methods depends not only on the choice of the right basis
but also (supporting a point made earlier by Butler & Anderson (1967)) of the right origin or
‘centre’ around which the basis is built. The problem we select for this purpose is the infinitely
strong shock, which has often played the role of a crucial test case, and is so interesting in its
own right that it deserves a brief review (see also Cercignani 1983).

The shock wave is an interface of finite thickness between two different equilibrium states of
a gas connected by the Rankine-Hugoniot relations. If the two states are close to each other
(as when the upstream Mach number M, is not far from unity), the structure of the shock is
adequately described by the continuum (Navier—Stokes) equations; for weak shocks there is an
extensive theory (Lighthill 1956). For stronger shocks higher-order continuum approximations
(like the Burnett equations) have for long been considered unsuccessful, although this view may
need to be revised in view of the recent conclusion of Fiskco & Chapman (1988) that the failures
were often the result of inadequacies in the numerical algorithms used for solving the equations.
A classical investigation by Mott-Smith (1951) postulated. the distribution within a strong
shock as the weighted sum of upstream and downstream maxwellians, and determined
the weighting by a moment procedure. Although the results obtained depend strongly on the
moment function adopted (Rode & Tanenbaum 1967), the Mott-Smith ansatz for the
distribution certainly appears to give qualitatively correct results. For this reason, other more
rational criteria for the determination of the weighting have been investigated (see, for
example, Oberai 1967; Narasimha & Deshpande 1969; Hosokawa & Inage 1986). On the
other hand none of the numerous attempts at improving the ansatz itself (see, for example,
Holway 1965; Lohn & Lundgren 1974) has led to a unique or even demonstrably better
solution.

The problem has also been tackled by strictly numerical procedures such as the Monte Carlo
method of Bird (1967, 1970). However, there has been just enough doubt about the faithfulness
of these procedures to the Boltzmann equation (see, for example, Deshpande et al. 1978 ; Nanbu
1986) that an exact solution, if available, would add a great deal to the stock of current
knowledge in rarefied gas dynamics, besides providing the kind of insight into the nature of the
shock that cannot come from any strictly numerical solution.

The current approach may be seen as developing a rational expansion scheme in which a
Mott-Smith distribution corresponds to the first term (but not, it must be emphasised, either
of the two approximate solutions proposed by Mott-Smith). Interestingly, we find that this
expansion is best implemented with the same set of polynomials that Burnett used, but centred
around the downstream (and not the local) maxwellian, and making no appeal to any
linearization. These differences turn out to be crucial for understanding and solving the
problem of the infinitely strong shock, as we shall further discuss in §8.

The infinitely strong shock was first specially treated by Sakurai (1957), who showed that
16-2
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220 R. NARASIMHA AND P. DAS

‘if we take a special form of the function X(M) (the shock thickness at Mach number M), the
requation f(O) — V(—x)f;+l/(x)‘fﬂ

(the Mott-Smith ansatz) satisfies directly the Boltzmann equation at large M for a finite, fixed
value [u,, the upstream gas velocity] of ¢’. This statement implies that the residual vanishes at
a molecular velocity equal to #,. Narasimha & Deshpande (1969) demonstrated that Sakurai’s
solution was basically a consequence of balancing the delta-functions (corresponding to the
upstream maxwellian in the infinite Mach number limit) that appear on either side of the
Boltzmann equation; i.e. of removing the singularity from the Mott-Smith residual. It must be
emphasized that there is no simple relation between the residual at isolated points and the error
(the latter being the difference between the exact and approximate solutions) : thus the error
does not necessarily vanish where the residual does so (as is clear from an analysis of the well-
known collocation method, see, for example, Finlayson (1972)). Furthermore, the requirement
that the residual be nonsingular does not determine a solution uniquely; in fact, all the
approximate solutions in the scheme we shall describe below also satisfy the requirement. The
interpretation sometimes given to Sakurai’s result, that it provides an exact solution for the
infinitely strong shock, is therefore unjustified.

It was pointed out by Grad (1969) and R. Narasimha (unpublished work) that the solution
for the distribution function anywhere in the shock can in the limit be decomposed into the sum
of a delta function and a regular function (see figure 1), corresponding respectively to a
molecular beam and a ‘background’ gas. (We can think of the infinitely strong shock layer as
a nonlinear fluid-dynamical device that converts the beam into the background gas at a
conjugate equilibrium state.) A possible method for computing these components of the
distribution was also proposed by Narasimha (1972). We report on the implementation of this
method here; a brief preliminary account has appeared in Narasimha & Das (1986).

In §2 we describe the decomposition of the Boltzmann equation and show how it can be
reduced to an infinite set of coupled nonlinear ordinary differential equations. It is shown

flow
— —
M, - © M,<1
3
fu(v3-0) fr(vsrc0)=F=n~te
=18(v-u,) MFP is 1/mV2
I
(5 f beam/
inner limit
~8(v-u,)
back ground/
/ outer limit \
~h(v;x)
Uy u v,

Ficure 1. (a) Notation adopted for the shock layer problem. (4) Sketch showing distribution function at any point
in the shock layer, decomposed into an inner limit at the upstream gas velocity, and an outer limit over the
rest of velocity space.
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SOLUTION OF THE BOLTZMANN EQUATION 221

further that all the coefficients appearing in these equations can be expressed in terms of four
basic ‘matrix elements’. The irreducible tensor formalism is briefly described in §3, and used
in §4 to calculate these matrix elements. The conservation relations to be satisfied by the state
variables are also given. Sections 5 and 6 sketch the numerical methods used for computing the
basic coefficients and the solutions. Results are presented and discussed in §7 and conclusions
are summarized in §8.

2. THE GOVERNING EQUATIONS

2.1. The Boltzmann equation

We consider a normal shock (figure 1) in a simple gas of rigid spheres in the limit as the
upstream Mach number M, tends to infinity. The Boltzmann equation for the molecular
velocity distribution function f{v, x) is written as

0, 0f/0x = J£.f] = GLAS1=LLAS]: (2.1)

Here v, is the component of the molecular velocity v along the mean flow direction x, and, for
two arbitrary distributions £, /; the gain and loss operators (whose separation i possible for the
assumed molecular model) are respectively given by

GLfif}) = ffi(v’) (W) go dQDw, (2.2)
LS = £ LIS Efiffj(w) 2o dQDw, (2.3)
where g=lgl=lv—w = v —w|

is the relative velocity between two colliding molecules, o is the differential collision cross
section for scattering into the elementary solid angle d2, and primes denote post-collision
values of the molecular velocities v, w of two collision partners. (For rigid spheres of diameter
b, we have o = 1b2.) It is sometimes convenient to replace dQ by b db de, where b is the impact
parameter and € the azimuthal angle around a polar axis parallel to g and passing through the
‘struck”’ molecule w considered at rest (Chapman & Cowling 1939). The collision integral
J1f,f;] is the difference between (2.2) and (2.3).
The boundary conditions for the shock problem are

Sw;x=—00) = n, d(w—u,) = n,8(c—U), o5
S0 x = +00) = ny(had/m)exp (—daic?), '
where c=v—u, U=u—u,, (2.6)

n is the number density, u is the gas velocity, a, is the scale parameter for molecular velocity
and ¢ is the Dirac delta function; subscripts 1 and 2 indicate upstream and downstream
conditions respectively.

We now adopt the following non-dimensionalization : all velocities are scaled by +/2/a,, all
distributions by n,(2a2)%, b by b,, x by (n,52)~'. The Boltzmann equation in the scaled variables
has the same form as (2.1) because all the extra factors are absorbed.

In the new variables, the maxwellian distributions on the cold and hot ends of the shock are

F,=1(c—U), E=m7lexp(—c), (2.7)

and the Maxwell mean free path on the hot side is 4, = [v/27n] ™.
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222 R.NARASIMHA AND P. DAS

2.2. Inner and outer limits

The distribution function may in general be expected to be singular within the infinitely
strong shock, as it is a delta function on the cold side. However, the collision integrals can only
smear or weaken the singularity, in the manner described in detail by Narasimha & Deshpande
(1969). Thus the strongest singularity in f can only be the remnant of the delta function
advected from upstream; we can therefore write ’

Slw5x) = qvo(x) 6(0—uy) +h(v; %), (2.8)

where £ is a non-singular function of ». It is immediately clear that it will be convenient to
study this distribution in two parts: the first at the upstream velocity %, corresponding to the
beam, and the second, consisting of the rest of velocity space, constituting the background.
Following Narasimha & Deshpande (1969), it is convenient to refer to these as the inner and
outer limits. No matching, however, is involved, and (2.8) may be thought of as the composite
expansion to the lowest order as M, — c0.

2.3. Ordering of collision terms

By using (2.8) in the Boltzmann equation (2.1), and noting the bilinearity of the gain and
the loss operators, the collision term (with a = jv,) expands as

J[ad+h, ad+ k] = a*G[8, 8] + aG[8, k] +aG[k, 8]+ G[h, k)
— a*SL[8] — adL[h] —ahL[8) —hL[A]. (2.9)

We first consider the inner limit. This involves the product of delta functions, which cannot
in general be defined uniquely. In the present situation there is, however, no ambiguity, because
it is the limit of a maxwellian; thus

J[8,0] = G[d,0]—dL[0] = 0. (2.10)
Consider now L[{]. By using (2.3),

L[d] =f(w—ul)lw—vlaDwdQ=00|v—u1|, (2.11)
where oy = Jo’dQ. (2.12)
Therefore G[6,8] = 0L[d] = oylv—uy| 0(v—uy). (2.13)

This says that although the gain at u, is infinite, its integral is zero; in the limit, therefore, there
is no net loss or gain at any velocity when two molecular beams interact.
As h is not singular, L[#] is in general non-zero and finite. Therefore

OL[h] = ()30, (2.14)
which, from (2.13), dominates the term JL(d). Consider now
G[d,h] = J(S(v’—ul) h(w’) godQ2 Dw.

The contribution to this integral can obviously come only from ©” = u,. In the inner limit,
v = u, also; therefore v = v’ (= u,); necessarily w = w’ as well. There is therefore no collision

that contributes; hence
G[0,h] =0 at ©=u,, (2.15)
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SOLUTION OF THE BOLTZMANN EQUATION 223
similarly G[#,d]. So in the inner limit we can write
‘ J[ad+ h,ad+ k] = —adL[h]. (2.16)
In the outer limit the term adL[k] makes no contribution, so we have
J[ad+h,ad+ k] = aG[8, k] +aJ[h, 6]+ J[h, k]. (2.17)

2.4. The inner and outer equations

Using the form (2.8), the left-hand side of the Boltzmann equation (2.1) becomes, in the
inner and the outer limits respectively,

. 0 Oh
=uv,n V,0(c—=U), vza—i:= Veg
where the dot denotes differentiation with respect to x.

Keeping in view the spectral method we shall propose, it is now convenient to adopt the
Dirac notation (see, for example, Dirac 1958), and rewrite the Boltzmann equation (2.1) as

vs, (2.18)

Sloaf> = AL = GUAS =LA, (2.19)

where each term is a Dirac ket vector identified by the labels inside the ket, and the
collision integrals (2.2) and (2.3) have the ‘coordinate’ representations given by the brackets
Gl 1 S0, <v|I:|fi,fj>, {v|L|f;>, to be thought of as the ‘components’ at v of the corresponding
kets. Using (2.16) and (2.17), we can similarly write the inner and outer equations as

uy vy = —voKU|L| A, (2.20)

2 0,k = 2 [G18, B + 1 83 + Ik, A, (2.21)

where (U|L| k) is the value of L[A] at ¢ = U (or v = u;). Note that the inner equation (2.20),
which describes a decaying molecular beam, has been formed by balancing the delta-functions
on both sides, i.e. we ensure a-non-singular residual, as in Narasimha & Deshpande’s (1969)
interpretation of Sakurai’s solution.

The coefficient (U|L|A) in (2.20) is really the local absorption rate of the beam molecules
in the evolving background gas; the corresponding free path is u, /{ U|L| ), whose value on the
hot side (F replacing /) would be the mean absorption length of a weak beam in the
background gas F,. Within the shock the beam is gradually transformed to the background, so
the beam attenuation rate varies correspondingly with position.

The equations (2.20) and (2.21) are a transformed version of the Boltzmann equation (2.1),
equivalent to it. Grad (1969) has arrived at a similar form, assuming that the gain operator
is symmetric, i.e. that G[ f;, f;] = G[ f;,f;]. We prove in §4 that this symmetry is valid for hard-
sphere molecules but is not more generally true. (The proof will turn out to be very simple in
the irreducible tensor formalism that we are going to use.)

At first sight, the outer equation (2.21) appears even more formidable than the Boltzmann
equation. However the background distribution 4(v;x), which eventually relaxes to the hot-
side maxwellian F;, may be expected to be not too far from it at any point in the shock, especially
as fast molecules from the hot side have a tendency to ‘leak’ to the cold side (Narasimha 1968).
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224 R. NARASIMHA AND P. DAS

Equation (2.21) therefore lends itself to solution through an expansion scheme. Based on this
expectation we expand & around F,, in a complete set of three-dimensional polynomials ¢
centred at u, and orthogonal with the weight F(c), so that we can write (2.8) as

S0;x) = y(x) 8(c—U) +v,(x) F(c) $*)(c). (2.22)

We shall call v, the ‘beam intensity’, the ¢ ‘modes’, and the v (x) in (2.22) ‘modal
amplitudes’.

Alternatively, using the Dirac notation, we write the modes in coordinate representation as
{c|ay, where a is any suitable label for the mode, obeying the orthonormality relation

{a|B) =0, (2.23)

The expansion of / in terms of these modes is now written as
1> = loap Lol b) = v, (x) [ap, (2.24)
where the v, are the modal amplitudes. Utilizing an expansion of the delta function in the same
basts de—U) = Fye){c| U = E(c){c|ay (x| UY = {c|adla|s), (2.25)

and using the operator |a) {a| in the equations (2.20) and (2.21), we obtain

uy vy = — v U|Lla) {a| k), (2.26)
and

%Iw loglad <al by = qvolly) <YIGI B, ) B8 {a| 1)
+1y> vl B Kl hy {B1EY]+ 1y ) vl e, B L Ay LBl AY.  (2.27)

It is convenient to rewrite these equations as

Vo =—C,vyv,, (2.28)
Arv, = Blvyv,+Jl,v, v, (2.29)
where C, = ULlap/uy, Ay = {ylugap,
By = §[{YIGIB, o) + {ylJla, £1AI U D,
and Jry =yl 8. (2.30)

If the expansion in (2.22) is truncated after N terms, the running indices a, £, and 7y in (2.27)
and (2.28) take values in the range 1,2,..., N. We then have a set of (N+ 1) equations to be
solved. Inverting the truncated matrix 4 and pre-multiplying by it on both sides of (2.28), we
finally h

natly Hlave by=C,vyv, (@=1,...,N), (2.31)

v, =PLUN)vev,+QL(N)v,v; (a,8,y=1,...,N). (2.32)

We denote the solution to (2.29) and (2.30) by v,(x; N) (2 =0,1,..., N). Our strategy is to
solve (2.29) and (2.30) for increasing values of N till convergence is obtained.

All the basic coefficients in the equations (2.28) and (2.29) can be expressed in terms of the
four basic matrix elements (U|L|a), {y|v,| @), {y|G|a, 8> and {y|L|a, B, whose evaluation we
consider after a brief introduction to the irreducible tensor formalism.
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3. THE IRREDUCIBLE-TENSOR APPROACH

The Boltzmann collision integrals involve three operations: transformation of velocities
through collision, multiplication of the distributions because of the quadratic nonlinearity, and
integration over velocities and the encounter variables. An appropriate formalism for the
treatment of the Boltzmann equation must handle these operations effectively, and we consider
these in turn (see Kumar (19664) for a somewhat different treatment).

3.1. General remarks

To start with, integration in velocity space clearly calls for orthogonal functions, with a
gaussian weight if the expansion is around a maxwellian (local or otherwise). An example of
such functions is the set of Hermite polynomials devised by Grad (19494, b),

H(e)=1, Hfe)=c¢, Hylc)=cq c,.—ai,.,l

(3.1)

H,.(¢) = ¢;ci,—¢; 05, —¢; 0y — ), 0y, €tC. ’

Here the number of functions of any given degree n (which may be defined as equal to the

largest exponent of ¢ and also to the number of subscripts on H) is 3", although (because of

symmetry) only 3(n+ 1) (n+2) of these are effectively used. It is clearly desirable to build in

such symmetry considerations right from the beginning, to avoid undue proliferation of

redundant functions and indices; the use of irreducible tensors enables one to do this, but in
addition confers many advantages in the other operations as well, as we shall show below.

We begin by noting that a tensorial set of order » may be defined (Fano & Racah 1959) as
‘any set of n quantities which are defined in connection with a system of space (velocity in our
case) coordinates and which experience a linear transformation when this system rotates’. Such
a set is more general than the tensors that are widely familiar, in that it could be made up of
vectors, tensors, or even operators. Given two tensorial sets a, and b, of the same order, their
sum is a set whose elements are a,+b,. Two sets a,, b, of order n and m respectively have a
‘direct’ product whose nm elements are a, by, which could indicate either ordinary algebraic
multiplication or other forms of combination, such as, for example, the action of an operator
a on a vector b, or the dyadic product of two vectors @ and b.

When subjected to a rotation of the coordinate axes, the a, are transformed to (say) 4, =
D,za, (sum over B), where D, is the matrix of transformation. Note that in general this sum
is over all members of the set a,; thus, if the set were the products ¢;¢; ¢, the number of terms
would be 27. However, it often happens that the set ¢, can be replaced by another transformed

set
a, = A,za5 (3.2)

where 4, is a unitary matrix, such that a rotation of coordinates transforms certain subsets of
the a, separately, i.e. among themselves, without involving members of other subsets. In this
case the transformed matrix D’ = ADA™" would have a block diagonal form as shown in figure
2, with vanishing elements outside the blocks; each block operates on a subset of the 4, each
element of which transforms into a linear combination of members of the same subset. The
procedure by which such subsets are formed, called reduction, has an ultimate limit in which
we are left with ‘irreducible tensorial sets’, on which no further reduction is possible.
17 Vol. 330. A
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X

X X X

X X X zeros

X X X

X X X X X

(,,:/]fj J X X X X X
;;‘\Jl zeros X X X X X
§ > X X X X X
O = XX oox XX |
~ = :
QO .
an ©) Ficure 2. Block-diagonal structure of the transformation matrix D’, when a tensorial set
= v is expressed in a privileged basis.

The need for such a decomposition of tensorial sets into irreducible parts has indeed been
earlier felt in kinetic theory, but the efforts made have usually fallen short of reaching their
logical conclusion. Thus Chapman & Cowling (1970) introduce, for a second rank tensor T in
a cartesian frame (x y z), its divergence (7,,+ 7, + T,,), its antisymmetrical or skew part and
the symmetric non-divergent tensor,

PHILOSOPHICAL
TRANSACTIONS
OF

-' (IS

X
T and

[
respectively. The difference, however, is that T has been thought of as a 3 x 3 array, and there
is no automatic or explicit recognition of the fact that the third component on the diagonal is

not independent of the other two (because of the trace already identified). The corresponding
irreducible tensorial sets are, in cartesian dyadic notation with #,j, k as unit vectors,

TO = Li+jj+kk) (T,,+ T,,+ T,,),
TO =4[ (jk—kj) (T, — T,,) + (ki—ik) (T, — T,) + (G —ji) (T, — T,.),
T = {3 (2kk —ii—jj) (2T, = T, = T,,) + (ii=ii) (.= T,)

:é + Uk +kj) (T, + T,) + (ki+ik) (T, + T,,) + (G +ji) (T, + Tp0) ],

= E whose direct sum is the tensor T:

® T=TO+TO+T®?.

=

= Q) Note that these three tensors contain respectively one, three and five elements (so accounting

E @, for the nine independent components of T); although at first sight the above irreducible sets
v

may appear clumsy, their virtues become apparent as the order of the tensor T increases, and
will include elegance when the right basis is adopted.

3.2. The Burnett basis

In three-dimensional space, such irreducible tensors (which we shall for brevity call i-
tensors) can provide a basis for an irreducible representation of the group of proper rotations,
known commonly as SO(3) (for special orthogonal in three dimensions) ; this fact immediately
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makes available many powerful group-theoretic tools in further analysis. For example, it is well
known that the complex spherical harmonics Y?,(é) (the same functions as in Edmonds 1957),
where ¢ is the unit vector along ¢, are a special case of and provide a basis for ‘irreducible’
representations of this group (see, for example, Wigner 1959). This means that after a proper
rotation of the coordinates in ¢-space, any given member of the set ¥*, is transformed to a linear
combination of members of the set belonging to the same value of / (which we shall call the
polar index; m will be called the azimuthal index). There are 2/+1 of these partners,
corresponding to m =—/, —[+1,...+/, in the irreducible representation of rank [ or
dimension (2/+1). Thus, let R(w), ® = wd, represent rotation of the coordinates by the angle
w around an axis defined by the unit vector @; the effect of such a rotation on the function Y?,,
denoted by By, is 4
R(o)Y,0,9) = 2 Y,.(0,) D)), (3.3)

m'==1
where ¢ is indicated by the polar angle # and azimuthal angle @ relative to some chosen polar
axis; D! ., () is a matrix ‘representation’ of the group, defined for every element of the group
(i.e. any rotation @) such that the product of any two elements is represented by the product
of the corresponding representatives: i.e. if

w, = w,w,, then D[w,] = D[w,] D[o,] (3.4)

(the latter product being conventional matrix multiplication). A group may have many
representations, but the set that is called irreducible has (again) the property that products
among members of any given irreducible representation remain within that representation. As
rotations are described by continuous variables, they form a continuous (or ‘Lie’) group, and
representatives (like D,,., for example) are actually functions of the polar and azimuthal angles
corresponding to @. Furthermore, these functions may be shown to obey partial differential
equations whose solutions include spherical harmonics (Fano & Racah 1959, Appendix E;
Talman 1968, §9.6).

Clearly it would be most convenient if the polynomials in ¢ that we use should be orthogonal
with a weight corresponding to the downstream maxwellian, which in our normalization is the
isotropic function exp (—¢?). We may therefore separate the angular dependence (to be
contained in the spherical harmonics) from that on the magnitude, and associate polynomials
of different degree in ¢ with each value of /. Noting that the spherical harmonics are orthogonal
to each other over the solid angle Dé = sin 6 df de,

inn(C”) Yy (€) DE = 0y 8y (3.5)

we are led to consider functions of the type
Pn(c) = Ryy(c) Y,y (6), (3.6)
where the radial functionis,l are proportional to the Sonine polynomials (as defined by
Chapman & Cowling (1970)) of index / and degree 7 in ¢?,
R, (¢c) = N(r,) 'SP (), (3.7)
and obey the orthogonality relation

[ RO RO RA 20 =8, (3.8)

0
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N(r,l) being the normalization factor [2m#!/I'(r+[+%)]%. (The subscript on the Sonine
polynomial appears more commonly as [+ 3, for example in Chapman & Cowling (1970).) The
functions (3.6) were introduced into kinetic theory by Burnett (1935), who demonstrated their
advantages in calculation; it therefore seems appropriate to call them the Burnett functions.

3.3. Some useful results

We now list here some of the major results that we shall need for our later work, taking the
opportunity to introduce the notations and normalizations we shall henceforth adopt. First of
all, we note that the Burnett functions are themselves orthonormal in the sense that

f@(c) $9(c) $93(c) De = 8(0,j), (3.9)

where i represents the triplet (r/m) (r being the ‘radial’ index), ¢ = ¢!1* (the star standing
for complex conjugation) and indices enclosed in round and square brackets indicate
respectively the ‘standard’ and ‘contrastandard’ forms of the function, in the notation of Fano
& Racah (1959). The Burnett functions provide a complete expansion for 4(v) in velocity

space, h(v,x) = E () (c) = Fle) vi(x) $"(c), (3.10)

summed over i, these ¢! and v; being the ‘modes’ and ‘modal amplitudes’ of (2.22).

When it is unnecessary to indicate explicitly the dependence of the functions on the
independent variable, we shall again find the Dirac notation very convenient: the mode ¢'")(c)
is expressed as the ‘ket’ |[{) (=|rim)) with a dual ‘bra’ denoted by {i| which in our case would
just be ¢ = @l™*. (The radial and angular parts of @’ will be denoted by {¢|rl) and {é|Im)
respectively.) An inner product is defined by the bracket

Gliy = f@(a) $9%(c) $9 (¢) De = 8(i,j), (3.11)

as we have already seen. This is equivalent to taking F,(c) Dc as the elementary measure for
integration in velocity space; a consequence is that the basic vector at ¢’ in the coordinate

representation is , ,
P (') = 8le—c) /),

and we can consistently write oL
Celay = Le|i)<ilay,
with the inner product (3.11). (Note that f(c) = F(c){c|f).)
Any operator O acting on the ket|j) yields a vector O|j), whose component along [i) is
given by the ‘matrix element’

(@0ljy = [£(0)#%(¢) (09(c)) De. (3.1
An irreducible tensorial operator 7% of rank £ is a quantity with 2k+1 components T,
g=—k,—k+1,..., +k, each of which, under a coordinate rotation ¢’ = R(®) ¢, satisfies the
relation

% = B, TP = S TPD®(R), k=0,1,2,...,¢ = —k —k+1,..., +k (3.13)
=

where D) (R) are matrix elements associated with the irreducible representation D™ of the
group SO(3). It is clear that the spherical harmonics Y, can therefore be interpreted as
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irreducible tensorial operators; equally, any set of operators 7® can provide a basis for an
irreducible representation D¥ of SO(3). Entities like 7 are often called ‘spherical’ tensors,
to distinguish them from the more familiar cartesian tensors.

Note also that for any given value of , the kets|rlm) constitute an irreducible tensorial set
of rank / and dimension (2/+4 1) with m ranging over the values —/ to +/.

Two i-tensors of rank /;,/, may be ‘coupled’ to produce another i-tensor of rank / with
components |lm, [, [, given by

llm, 1> = 2 |lymy)|lymy) (I mylymy|im) (3.14)
mymy

where the parentheses indicate the well-known Clebsch—Gordan (or Wigner) coefficients (see,
for example, Edmonds 1957). These coefficients have been extensively studied and tabulated ;
in the Condon—Shortley convention which we adopt here, they are real, unitary, and
orthogonal in the sense that

X (hmylymy|lm) (lymy lymy | Um') = 0y 8,5 (3.154)
S Uy my lymy ) (ly Ly ) = By B (3.155)
l,m

They further obey the selection rules
(lymy lymy|im) = 0,

unless m=my+my =L <I<+1, (3.16)

the latter being called the ‘betweenness’ or triangle condition. One consequence of their
orthogonality is a rule for decomposition of products,

[y m)llymey = 2 llm) (Im| 1y my lyms,). (3.17)
im
A product of Burnett functions therefore has the decomposition
|rylymyylrylymy) = 2 [rim) (Im |l my Ly my), (3.18)
rim

where the sum extends over all /, m for which the Clebsch—Gordan coefficient does not vanish,
and r is determined for each [ from the condition that the largest exponent of ¢ on both sides
be the same, i.e. that 2, 41y +2ry+ 1, = 2r+ L,

An important property of i-tensors is that they obey the Wigner—Eckart theorem, which
splits the matrix element of an i-tensor operator T into two factors,

(rim| TP Im'y = (214 D (Um'kq | lm) A| T®) 71, (3.19)

where the first bracket on the right is a Clebsch—Gordan coefficient, and the second, called the
‘reduced’ matrix element (identified by the double bar and independent of the azimuthal
indices m,m’ and ¢) is a scalar. As the Clebsch-Gordan coefficients can be computed
independently once and for all, the theorem enables a drastic reduction of effort in computing
integrals over products of the Burnett functions, especially when the rank of the tensors
involved is high.
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3.4. Transformation to central and relative modes

The remaining problem of transformation between pre- and post-collision velocities in
handling the collision integrals is tackled through the Talmi transformation for the Burnett
functions (Talmi 1952; Kumar 19664). These coefficients are the elements of a matrix of
transformation from a basis consisting of products of Burnett functions in the c-space for two
particles to those in the centre-of-mass and relative-velocity coordinates. The defining relation
is

eliydealiy = ey lm e m > (0], 3.20)
h 1 1
_where c+—w(c1+02), c_—w(cl—cz),

and the subscripts + and — denote respectively indices and velocities in the centre-of-mass and
relative coordinates; the third angular bracket on the right-hand side denotes the Talmi
coefficients. Our definition of these coefficients differs from that of Kumar (19664) by a phase
factor of (—)3(l, +1_—1;—1;), owing to the difference in the definition of the Burnett function
by a factor i’

Balashov & Eltekov (1960) have shown how the dependence of the Talmi coefficients on the
azimuthal indices can be extracted out through the appropriate Clebsch—Gordan coefficients,
leading to the expression

r.l,m,

r_l_m_

where the angular brackets on the right-hand side are the coefficients named after Brody &
Moshinsky (1960) (also called the ‘oscillator brackets’).

A fact of great value is that for given values of the indices i and j, the sum in (3.20) is finite,

i.e. that only a limited range of values for the indices #, and n_ lead to non-vanishing Talmi
coefficients. The actual range is given by the selection rules:

rylym; L, 7l

) = Wt ) (7 0 ) Gl ) (3.21)

7

7 lym;

(@) my+m_=m;+m,,
b) L+L > 1l—1),

(
(0) (Li+l) ==L,
(d) 2(r,+r)+ L+ =2(r,+r)+1,+1,.

(3.22)

The first three of these rules follow from those for the Clebsch-Gordan coefficients (3.16), and
the last is necessary to ensure that the degrees of the polynomials on both sides of (3.20) are
the same. The Brody—Moshinsky coefficients follow only the selection rule (3.224) above.

It is clear that the transformation (3.20) enables products of Burnett functions in a specified
frame of reference to modes in centre-of-mass and relative-velocity coordinates. The inverse
transformation enables us to return to the original frame when necessary.
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4. THE MATRIX ELEMENTS
In the present section we now derive closed-form expressions for the four basic elements of
§2.4, namely (UI|L|i), {klv|j>, <k|Gli,j)> and <{k|L|i,j», and for the modal amplitude of the
beam <i| U) (note that here we are using triplets instead of single indices).
4.1. The streaming operator

The matrix elements of the streaming operator are given by

(o ljy = jchz@) Gleyulelid, (4.1)

where i = (r;,[;,m;) and j = (7;,1;, m;). As we have chosen u, as the reference velocity (see (2.6)),
we write v, = ¢, +u, and note that ¢,, the streamwise component of the molecular velocity c,
is proportional to a Burnett function,

¢, = 2010] ey = v/ (4) 10| ) = v/ (34m) e}, (4.2)
where ¢ = |¢| (choosing the polar axis along the x-direction). Using (4.2) in (4.1) and noting
that I .

luglj> = uy 8(3:J),
we get oy = v/ (4n/3) KileYolj) + uy 6(3 ). (4.3)

As the Burnett function here is a polynomial of degree /, the first term on the right will be non-
zero only if p, (=2r,+1,) < p;+1 and p, < p,+ 1. But the integral is zero for p, = p;, as in that
case the integrand is odd. So we are led to the following selection rule for {il¢,|j):

po=pL. (4.4)
Separating the integral in (4.3) into its radial and angular parts, we can write
<i|€Y¢1)|j> = <7i lz”C” 7; 1j> <li mi|Y(1)| lj mj>3 (4.5)

where we have introduced the radial integral

A = [l no iy é de (4.6
0
By using the Wigner—Eckart theorem, the angular integral in (4.5) is

U Y, = f (lymy| € <E1 105 <&y m,> dé

= (Gl (4;mg| 104;m;), (4.7)
where ALy = (%%ﬁ%) (1,01 10L,0). (4.8)

The selection rules (3.16) for the Clebsch—Gordan coefficients imply the following selection
rules for the matrix elements in (4.5):

L—=1<l<l+1,m=m;, and (,+/[+1) even;

ie. l,=1,+1. (4.9)
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Consider first the case /; = /,— 1. The radial integral (4.6) now simplifies enormously, for,
using the definition (3.7) of the radial functions, we have

_ ! P [ —t e+ QL) o)
ety = (i) [ s sy a (4.10)
where s=L+5,5 = L+3,
and k=Yl4L+2)—s =Y~ l+1) = 0.

Now we use the well-known result (Erdelyi et al. 1953, vol. 2)

f :0 €800 (£) S% (1) dt = s+ ”) ,' ((:j::)r; —n) (4.11)
where (x,7) = I'(r+x)/I'(x). As & —s = —1, we have (s'—s,7,—7,) = 0 unless r,—7r, < 1, and
1/(r;—r;)! = 0 unless r;—r, > 0. This gives us the selection rule for the radial integral,

O0<r—r<1. (4.12)
By using (4.11) and (4.12) and the fact that [, = [,—1, (4.10) simplifies to
Crllel > = 8L, L= 1) [8(r,r) v/ (ry-5) = 81 ro+ 1) /1], (4.13)

In addition in the present problem we have the azimuthal indices zero. Putting /, = /,—1 in
(4.7) and using the explicit expression for the Clebsch-Gordan coefficients (see Edmonds
1957), the angular part of the matrix element becomes

L0l (4m/3) Yil,0) = [(2+1) (20, + 1)1¥,.

Therefore
CriliOleyl 74,05 = 8(Ly b= 1) [(2L+1) 2L+ 1), [8(rjy 1) v/ (re+ Li+3) — 81, 1+ 1) v/ 1]
(4.14)
When /; = [;+1 the argument is similar, with 7, replacing 7, and /; replacing /,.
So finally we can write for all 7, /,, ,, [,
{1l Olug 7, 1,0 = wy 8(ryy 1) 8(L, ) + [(20,+ 1) (24, + 1))

X [8( L= 1) {8 (r;, ) v/ (ry+ L+ 3) = 8(ryyr+ 1) V1)
X 8Ly b= 1) I8 (riy 1)) V/ (1 + L4 5) — 8 (ryyry+ 1) 1] (4.15)

It is clear from this expression that the streaming operator acting on any mode produces four
neighbouring new modes, all of the same parity (see figure 3). The streaming matrix [4] has
only five non-zero diagonals, including the principal.

An expression similar to (4.15) has been derived by Mott-Smith (1954) (see Sirovich 1963)
without using the irreducible tensor formalism. Kumar (1967) has given an equivalent
expression, which he derived using a generating function for the Burnett functions.

4.2. Matrix elements of the collision operator

Expressions for the full collision matrix elements have been derived by Kumar (19664); for
our use we need separate expressions for the gain and loss elements. It will be convenient to
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{+1 1 2
Original mode
1 O
- 3 14

r-1 r r+l
Ficure 3. Sketch showing the new modes produced from the mode |r/0) by streaming.

quote results for spherically symmetric molecules with a cut-off in the potential, specializing to
hard spheres when necessary. The main steps in the derivation will be described as an
illustration of the technique we adopt.

Consider the gain matrix elements, which are given by the integral

CklGlij) = j<k|6> G(Ey(e)<e|i), F(c)<{clj>) De

= j<k le> E(e1) B(ey) ¢’ i) <1 |j) g (g, x) De De, dQ. (4.16)

The crucial step is to express the integrand completely in terms of Burnett functions in centre-
of-mass and relative-velocity coordinates (or in ‘central’ and ‘relative’ modes, as we shall say).
This resolution is achieved by the Talmi transformation (3.20):

)

eliy<eliy = Celm,y<e n > (0

_ " n, i
Cenlny el LYCE | Lm.Y <n_ J.>, (4.17)
<k|c1> = <k|c1><0|cz>

- <’5 Z> e < U e S m | E, (4.18)

where we have split the relative Burnett modes {c_|n_) and {n’|c_) into their radial and
angular parts.
For spherically symmetric molecules the differential cross section can also be expanded as

o(g, %) = 0,(g) [(21+1)/4n]:P,(cos X)

(4.19)
= 0,(8)<€lpe><pq18",
where |pg) are the spherical harmonics Y?(x,€) and
1
o,(g) = 21‘Cf o (g, x) Py(cos y) d(cos ). (4.20)
-1

18 Vol. 330. A
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Substituting (4.17) and (4.19) in the integral (4.16), and recalling that g = ¢_ /2, the latter

becomes k n;> n, i>
n / \n_|j

w61y =v2 (g
J(r’_ Ule e o,(cov/2,x)e_|r 1) Fy(c.) cEdc_J(l’m' [é_><é_|pg>dé_

X f(ﬁq |75 <E | Im) clc”’_j<n+ le,><c,|n,yDe,. (4.21)

The integrals in (4.21) are respectively {r'l[lc_o,(c_\/2) | 7l>, {U'm'|pg>, {pgq|im), and
{n,|n") (excepting the first, all of these are Krénecker deltas owing to the orthogonality of
the Burnett functions and the spherical harmonics). Using these values (4.21) simplifies to

n+
r_l_m_

J’> (4.22)

ol =va(g| 1 )< lea vy

Similarly, we can arrive at the corresponding expression for the loss operator,

CkILLE, Y = v/ 2k n, )< L le_ag(c_v/2) 71y <m | i)

) (4.23)
Ck|L|i,jy = /20 r_1_m_><rl i |le_og(co v/ 2 r_ 1) <{n_[j

The structure of the expressions (4.22) and (4.23) suggests the following physical picture (see
figure 4). The modes |i) and |j) are transformed to the central and relative modes |n,) and
|n_) through the Talmi coefficients. The central modes |n,) are unaffected by collision, and,
due to the assumed spherical symmetry of the molecular model, the angular parts of the relative
modes |n_) are also unaffected. So what changes in collision is only the radial part of the
relative modes. The outcoming modes are anti-transformed back to the original modes in the
usual coordinates through a further set of Talmi coefficients.

central modes /

i —
E ed

\ %—— k
J/ relative modes \\

split collide combine

Ficure 4. Diagram to illustrate the computation of collision matrix elements. To compute the interaction of modes
i,j, they are first split into central and relative modes through a Talmi transformation. Only the latter change
by collision: the resultant relative modes are recombined with the unaffected central modes through Talmi
transformations to calculate the amplitude of mode k.

For hard-sphere molecules, o = § and o, = T in the scales we have chosen; therefore,

+1
o, = 215] 1P, (cos y) d(cosy) = oy 8(L_,0). (4.24)
-1

Thus only /_ = 0 contributes to the sum in (4.22). However, all possible values of /_ contribute
to the loss matrix elements; otherwise there is no difference in the evaluation of the two matrix
elements for hard-sphere molecules. In fact, if (4.22) is written as a sum over the index /_, then
the first term in the sum is the gain matrix element.
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The expressions (4.22) and (4.23) can be simplified by writing the two Talmi coefficients in
an expanded form using (3.21):

Teli

. @ l
<KIGli,jy = v/2(L,m 00| A, y) <00("1> :f zf>

X (Agpyllom_l,m ) e_oy (c_n/2) || r_ 1)

r,. .l :
oL D) ()7 00 Ol my), (4.25)

From the properties of the Clebsch—Gordan coefficients (Rose 1957),
(lemi 00| Ay puy) = 0L Ay) O(my, piy). (4.26)
By using (4.26), and (3.154) in (4.25), the latter simplifies to

rol,

ol = va (s )l )Ll e o (e vl L

r,l ;s
X <r:_L li(lk) Tj lj> (Lmy | L,m, lymy). (4.27)

Similarly, the matrix elements of the loss operator simplify to

A Icl +l+ /
WiEligy = v2 (a0 ) e ae vl L

r, [ 1L,
X <ri li (4, r lf> (Lemg | Lymy Lmy). (4.28)

After deriving the simplified expressions (4.27) and (4.28) we have learnt that essentially the
same derivation was carried out by Ness & Robson (1985). In §4.4 we will provide a group-
theoretic interpretation of these results.

The expressions (4.27) and (4.28) have a rather neat structure. For example, we can write
them as

kIGli,j> = b Gl rdyy vy LY (Lomy | L my Lom,),
k|Gl 6,7y = b Gll 7y 1y > (Lo | my ,)} (4.29)

and <k|£| Lj) =<n lkllill Tilis 1y ) (e mye | Ly by my).

7

The brackets on the right here are free of azimuthal indices and so are scalars, and, by
comparison with the Wigner—Eckart theorem (3.19), may be interpreted as reduced matrix
elements. These quantities (which are much less numerous than the gain and loss matrix
elements) alone contain the ‘physics’ of the collisional interactions.

The expressions (4.27) and (4.28) afford great economy in terms of computation. For
example, for hard-sphere molecules, when k = (4,5,2), i = (3,5,1), and j = (4,4,1), the
computation of collisional matrix elements using (4.22) and (4.23) involves a sum over 505
terms and takes 62 seconds on a DEC-10, whereas the use of (4.27) and (4.28) leads to a sum
involving only 110 terms and takes less than three seconds.

We see that for spherically symmetric molecules the Brody-Moshinsky coefficients are all
that are needed to compute the matrix elements, and one can do away with the relatively
complicated Talmi coefficients. Further, it is only the radial integrals that depend on the
molecular model, the Brody—Moshinsky (or Talmi) coefficients and the Clebsch-Gordan

coefficients being ‘geometric’ or model-independent. Conceptually, this helps us distinguish
18-2
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the effects of the particular molecular model from those arising from geometric considerations.
Algebraically, because explicit formulae are available for all the ‘geometric’ coefficients
mentioned above, we only have to worry about evaluating the radial integrals. (For the hard-
sphere molecule here considered, analytical expressions for these integrals are available, as we
shall see in the next section.) This alone is a matter of great importance to kinetic theory,
because workers have often been forced to use Maxwell molecules not so much because it is
superior for physical reasons but purely to reduce the prohibitive algebra. (Also, contrast the
present method with classical methods, for example Chapman & Cowling (1939) and especially
Burnett (1936), who used almost the same polynomials as we do.) Computationally, the
geometric coefficients, being problem independent, may be computed and stored once and for
all for use with any molecular model. In addition, the selection rules for these coeflicients ensure
that we do not compute those terms that vanish by symmetry. (We will see in §4.4 that these
selection rules lead to selection rules for the collision matrix elements themselves!) By using
Brody—Moshinsky (or Talmi) coefficients one can compute the collision matrix elements to at
least nine significant figures in a matter of minutes on a computer like the DEC-10, and for a
given molecular model this has to be done only once. The significance of this facility can be
understood in the light of the fact that time-consuming Monte Carlo procedures (see, for
example, Hicks et al. 1972) have been used to evaluate the collision integral approximately.

4.3. The beam-loss coefficients

We now derive an analytical expression for the integral

(oLl = n J B(ey)<e,|iy gDe,, (4.30)

where we have again put o, = m. The strategy is now to expand g in central and relative modes,
and use the Talmi coeflicients to transform to Burnett functions in the usual coordinates, at
which stage integration becomes automatic.

Putting g= g9 (c,), (4.31)
we write 0] = eln><n 1 <0,
~ aln > (O] 5) ki Gile .

where the bra {0, corresponds to the dual Burnett mode ¢! (c,), and the bra {g| corresponds
to the function g.
Using (4.32) in (4.30) and using the orthogonality of the modes i, j, we have

0
n

(elLliy = n<g|n_><

+

'; ><k|c> (4.33)
But
{gln_) = n\/QL F(c)<e_|r_l-Yc_ctdc_ J(c’_ [l_.m_Y>dé.

=V 2 L |e_|0056(L,0)d(m_,0),

(4.34)

so only /. = 0,m_ = 0 contribute; we encounter again the radial integral introduced in (4.6).
The expression (4.33) is formally an infinite sum over the index triplet k = (r,,/,,m,) and n_.
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However, because only /_ = 0 and m_ = 0 contribute to the sum, using the selection rules (3.22)
for the Talmi coefficients, we have

L=, my=—my; r_=r+r+l. (4.35)
Incorporating these rules we obtain

000
r_00

Teli—my

r,l.m

(elLli> = my/2€00] c_[ 70D <

> (reli=myle, (4.36)

with summation over r, which can take values from 0 to c0. The presence of zero indices here
leads to further simplification. To achieve this we first note that the radial integral {rl||g*|| 7'I'),
which is proportional to an expression of Exton (1978, p. 106), is

(s+1,r)(s+1—a,r) rir! : a, —r,a—s
01 4.37
iy’ (r+s)!(r+5)! b s+1l,a—s'—r" " | (4.37)

Krlllghll 'ty = I'(a)

where s, = (+0.5, s =I'+0.5, a = 3(I+ '+ k+3), and ; F, is a generalized hypergeometric
function. A special case of (4.37) is '

r_0lle_[ 00 = <00[c_||7-0> = (—§,7_) [r_! (r_+5)! (5) . (4.38)

Using the explicit expression for the Talmi coefficients as given by Kumar (1966 4) for the
indices as in (4.36), applying the phase correction mentioned in §3.4, and using the special
values of the Clebsch—Gordan coefficients (see Brink & Satchler 1968, p. 140)

(0000]Ax) = 8(4,0) 8(u,0), (4.39)
(= myl;m ) 00) = (=) ™20+ 1), (4.40)

we obtain the following simplified expression for the Talmi coefficient in (4.36):

000 |7, l,—m, gttty 1 Url(r+})! ]
TN (_\Tptretr_tlmmy Ly 7o 4.41
<r_OO r,l,m, > (=) ) i (st (g +s) )’ ( )
where s, = [;+13.

Splitting the Burnett functions in (4.36) into their radial and angular parts as in §3.3 and
noting that the angular part N A
s SWREPEE e limyy = (—)mélf—my, (4.42)

we have

CelLliy = T/ 2% Nir, L) T(p)/ (T(—3) T (145 7))

o0 r )
xE|lmyc Y (3 re_(BTk) S (¢?), 4.43)
[ > remo (2) (1 +‘fz’7 rk) k ( ) (
where p = r,+1,—3%, and (x,n) is the Pochammer symbol defined in §4.1.
We can express the summation in (4.43) in terms of hypergeometric functions using the
result (Erdelyi et al. 1953, vol. 3)

o0

- po_ x| & (n)SPR) .
(1=0) 1F1[1+s’—1—t]_,§0 (1+s,n) e (4.44)
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238 R. NARASIMHA AND P. DAS
With ¢t =3, —«t/(1—1t) = —x, p = r,+/,—3 and s = 5, and applying Kummer’s transformation
(Erdelyi et al. 1953, vol. 1) the left-hand side of (4.44) becomes

@) 7Pexp (—¢*) 1 A [2—n)/(1+5);¢]. (4.45)

Making use of (4.45) in (4.43) and simplifying, we finally have
LIty = N (r, L) (T (p) / (T(=5) T(1+5) 1i)}Ey(€) <€l limpy K [(2= 1)/ (1+59)5¢°]. (4.46)

The above expression is new. For r, = 0 = /;, we recover from it the expression of Deshpande
& Narasimha (1969) for the loss integral of a maxwellian. The hypergeometric function here
is an infinite series for r, < 2, but is proportional to a Sonine polynomial otherwise: thus, for
T 2 27

(r,—2+s,)!
rb(r+s) ! (r,—2)!

CelLliy = m{T(p)/ (I(—3) 1"(1+~%)}[ ]§<0|n~—2, lymp.  (4.47)

4.4. Structure of the collision operator

An application of the selection rules that govern the purely group-theoretic Clebsch—Gordan
and Brody—Moshinsky coefficients gives us considerable insight into the structure of the
collision operator.

1. The selection rules (3.16) for the Clebsch—Gordan coefficient in (4.27) and (4.28) imply
that the gain and the loss matrix elements vanish unless the indices k, i, and j satisfy the
conditions

I, =1 <, <L+ (4.484)
and my, = m;+m;. (4.485)

Similarly, the selection rules (3.22) for the Brody—Moshinsky coefficients in (4.27) and (4.28)
ire that

require a (_)lk — (__)L+l and (_)L+l — (__)li+lj’

implying (Le+1,+1) is even. (4.48¢)

Stated in words, if two ‘input’ modes |i) and |j) interact by collision, then their polar and
azimuthal indices constrain those of the resulting ‘output’ modes |k). For example, if the
interacting modes are |121) and [121), the resulting modes are only |r,42) and |r,22) (r, =
0,1,2,...); symmetry rules out the production of all other modes. From (4.48¢) the parity of
any output mode is the product of that of the input modes. Thus, in the above example, all
output modes are even.

An interpretation of the above result is possible by noting that the selection rules (4.48a—¢)
are identical to those governing the well-known Gaunt integral (see, for example, Rose 1957)

[<tumele<ettmy <erymyae

Because the spherical harmonics appearing in the integrand above are the angular parts of the
modes {k|c), {c|i), and {c|j>, we conclude that the angular dependence of the collision
integral <{c|J|i,j> (as also of {c|G|i,j> and {¢|L|i,j) separately) must be the same as that of
C(€ll;m;p<{é|l;m;>. (That this is so for the loss part was already explicit in (4.46).) This is a
simple consequence of the scalar nature of the collision operator (i.e. it is an i-tensor operator
of rank 0) for spherically symmetric molecules.
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The radial part of {c|J|i,j) is of course not identical to that of the product F, E{c|i)
{cl|j), as the collisions produce new radial modes. However, as is clear from (4.46), the loss
integral of a Burnett mode has a maxwellian factor. The results of Deshpande & Narasimha
(1969) show that even the gain integral has maxwellian factors when the input distributions
are maxwellians. Therefore, we may expect the following form for the full collision integral:

{c|J|i,j) = const. X Fy(c) Fy(c) {é|l;m;» {€|l;m;) x (radial function). (4.49)
For r, > 2, the expression L|i) is proportional to a Burnett mode as seen in (4.47), so that
L|i,j> = const. |i) |r;—2, 1, m,). (4.50)

2. The Talmi coeflicients have the property

(o
r_l_m_

Using this in (4.22), we get for the transposed gain operator

Jl> = <—)l_<r_ Z*m_ J’> (4.51)

n,

n,
d r_l_m_

i m

ety = (-)'v2 (g

)llea vl Y

J’> . (452)

It is clear from comparison with (4.22) that this sum has the same terms as <k|G|i,j), but with
alternating signs. In general, therefore, the gain matrix element is not symmetric in i,j: the
order in which the input modes interact must be specified, and |i) hitting |j) is different from
| /> hitting |Z>. But for hard-sphere molecules (4.24) implies that only /. = 0 contributes to the
sum in (4.22) and (4.52), and therefore that the gain elements are indeed symmetric,

CkIGli,j> = <KIGj, i), (4.53)
equivalently, Gli,jy = GlJ, 5, G| hy = Gl hf), (4.54)

a result used earlier by Grad (1969) without explicit restriction to hard-sphere molecules.

3. From (4.23) we see that for spherically symmetric molecules the loss operator depends
only on o(g). So it is independent of the variation of the cross-section with scattering angle y.
In other words, two molecular models having the same o, but different o, 7,, etc., will result
in the same loss integral.

4. Following Kumar (1967) we may define the symmetric sum

Kkl J16,jy = 3[<kI iG> + <kl J1j, D). (4.55)
Linear transport theory involves the matrix elements
k| T rim, 03,  <k|J]72m, 05,

respectively for the thermal conductivity and the viscosity; indeed the ‘Chapman brackets’ [, ]
(see Chapman & Cowling 1939) and the B-coeflicients of Sirovich & Thurber (1965) are
special cases of the Kumar bracket (4.55),

— [, U] = B(r, ;7. 1,) = <k|J|i,0). (4.56)
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240 R. NARASIMHA AND P. DAS

Chapman & Cowling actually use in (4.56) only certain linear combinations of the brackets,
the most complex of them being (in their notation)

[$§ () cse, S8 () cle], (4.57)

which is related to our {32m|J|32m,000): i.e. the highest polar and radial indices used are 2
and 3 respectively.

Using classical methods Mott-Smith (1954) derived an analytical formula for (4.56). From
this formula Sirovich & Thurber have computed (to six significant figures) many blocks of
these coefficients normalized with respect to B(02;02). Our computed values for

k| T, 0% /<020] J|020, 0>

agree with the tabulation of Sirovich & Thurber (1965). Mott-Smith also showed that the B-
coefficients were zero unless /, = /;, which is a special case of the selection rule (4.48) for the
collision matrix elements.

Kumar (1967, eq. 116) has shown that

(n*|J1i,j) = 0,<k|J|0,n*) =0, (4.58)

where n* is any one of the five triplets, 000, 01m, (m = 0, +1), 100. Because (4.58) implies that
the modes |n*) can neither produce other modes nor be produced by them, the relations (4.58)
reflect the existence of collisional invariants and the conservation of particle number,
momentum and energy respectively.

In actual computation it is convenient to use a singlet label for the modes instead of the
triplets i, j, etc. A systematic procedure for identifying a unique a with any i is described in
Appendix A. Using this identification we can derive, from (4.58), the conservation laws that
are followed by the first six modes v, (& = 0-5) in the case of the normal shock. These laws are
described next.

4.5. The conservation laws

We now show that equations (2.28) and (2.29) automatically satisfy all the three
conservation laws at any stage of truncation. For the one-dimensional shock problem these laws
can be stated as

SOl = G =0, y=1,23 (4.59)

where {y| are the first three Burnett functions in the order described in Appendix A.
Using (2.9) we rewrite the collision term in (4.59) as

—ylé(e=U)|L[k]) a+ y| I [k, k] +aG[d, k] +aJ[h,8]) = 0. (4.60)
From (2.26) the first term here is
—aly | USCUILI kY = —ny vy v, {y [UDCUIL ) (4.61)
and from (2.30), the rest of the terms are
Ly Ik, k] +aG[8, k] +ad[h, 81) = Joyv,vy+ Blv,yv,. (4.62)
Putting (4.61) and (4.62) in (4.59) and collecting like terms we have

0= [—n,{y|UXUILla)+ B}l vyv,+JLsv, vy (4.63)
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This implies that (Jhy+Jh) =0, (4.64)
which is the same as (4.58), and

B! = n,(U|Lla), B:=n+/3ullla)y, B:=0. (4.65)

The relations (4.64) and (4.65) are valid for all « and £ and must hold for all molecular models
incorporating elastic collisions. Therefore, the coefficients appearing in any truncated version
of (4.28) and (4.29) also obviously satisfy them, and hence the corresponding solutions
v,(x; N) automatically satisfy the conservation laws. This feature is common to all moment
expansions where the coefficients are combinations of a finite number of moments (for example,
when an alternate polynomial set with the same weight is used).

We now proceed to express the conservation laws in terms of the basic unknowns in our
formulation, namely the beam intensity v, and the modal amplitudes v,. By using the form
(2.8) of f the left-hand side of (4.59) can be written as

S inldle =)y it oyl alhy = i YUYy + oy i, (466

where (ylv,| ) are given by (4.15), and the first three terms {y|U) are

Uy =1, L2|U)=+2U=+/3, {3|U)=0. (4.67)
Using (4.67) and the explicit expression (4.15) in (4.66) we have
[S145} = 0, (4.68)
Vi Vi Vi 0 0 0
where [S1=|v: v Vs —Vi Vi 0
0 0 —vi Vi 0 i
and (P} = v, V1, Vg, - .., V) (4.69)

Integrating (4.68) and evaluating the constants of integration from the upstream conditions,
[$1{7} = (5,3, 0" (4.70)
We can use (4.70) to express the amplitudes v,, v4, v, in terms of v, v, vy as follows:

Vo Vi —Vi 0 Vo V3
vy (= —Vi —Vi VZ[{n+{Vvi) (4.71)
Ya -% v V¥ 75
Thus the three equations (4.59) translate to the three linear algebraic equations (4.71) for the
v,, by virtue of which three of the infinite set of differential equations (4.28) and (4.29) are
redundant.
4.6. The fluid-dynamical variables

The Burnett functions are polynomials and hence the v, are linear combinations of the
moments of the distribution function. Expressions for the fluid-dynamical variables in terms of
the v, are given below (in table 1).

19 Vol. 330. A
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TABLE 1. EXPRESSIONS FOR THE FLUID-DYNAMICAL VARIABLES IN TERMS OF THE Vv,

upstream downstream

expression in terms of the v, value value
density: n = n,vy+v, n, 1
velocity: u = u,/n u, Uy
temperature: T = (i) [n,(u™ —U)?vy+ ™2 +3) v, —2u~v,— v, ] u™ = u—u, 0 3
hydrostatic pressure: p = (&) T 0 i

stress 0, = p+7,.:

0y = [~ = U)o+ (™2 +3) v, — 20" v, — vy +V/5%,] 0 3
stress o, ={b+‘rw: \ . .
Ty = 3[V1 =V — Vil 0 3

heat flux:
q=%["1(”~_U)3V0_”~(”~2+%) V1+\/§(3u~2+%) V2+(%) “NVB_(%) ”~V4_%V5]' 0 0

5. COMPUTATION OF THE COEFFIGIENTS

We present in this section a brief summary of the way we compute the Clebsch-Gordan and
Brody—Moshinsky coefficients as well as the radial integrals, which appear in the expressions
for the basic matrix elements derived in §4. Although analytical expressions are available for
all of these, their computer evaluation presents special difficulties. These difficulties are critical
in the context of nonlinear kinetic theory, where some of the coefficients are required for indices
much larger than in earlier work (for example the Brody—Moshinsky coefficients are needed in
nuclear physics only up to r & 8, whereas we go up to r & 40). The existing methods of
computing do not seem to be widely known and appreciated, and it is not unusual, in
computations of this kind, to spend considerable effort in trial and error for want of appropriate
algorithms. So we hope this short guide may help avoid duplication of effort.

Most of the expressions to be evaluated involve sums over terms of alternating signs, and
hence there is a possibility of loss of significance by subtraction. So, as a safety measure, we have
written alternative programs for all the coefficients we compute and have used double precision
throughout. The expressions used, together with the associated computer programs, are
available in Das (1989).

The Clebsch—Gordan coefficients are computed using an explicit formula given by Edmonds
(1957, p. 45), using the scheme of Wills (1971). In this scheme the expression is recast in terms
of hypergeometric polynomials expressed in nested brackets, and evaluated by Horner’s rule.
For large values of the polar indices the factorials in Edmonds’s expression become very large,
leading to overflow—underflow problems; this difficulty is avoided (Tamura 1970) by taking
logarithms of the terms containing factorials (the logarithms being conveniently stored in a
look-up table) and exponentiating the result before summing. However, because the sum
involves terms of alternating sign, errors due to series cancellation appear for large /. Wills
showed that in single precision his method fails at / = 30.

We have programmed Wills’s method in double precision arithmetic. As even this does not
guarantee immunity from series cancellation errors when the indices are sufficiently large, we
have, for cross-checking the results, written an alternative program using an equivalent
hypergeometric expression given by Biedenharn & Louck (1981, p. 432).

The Brody—Moshinsky coefficients are computed by the method of Dobes (1979), using
Wills’s approach for the hypergeometric polynomials and Tamura’s technique for handling
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factorials. We are thus able to compute the Brody—Moshinsky coefficients up to values of r as
high as 40. \

The expressions used for the Brody-Moshinsky coefficients involve the 9-j and 6-;
coefficients, which are evaluated respectively by using a formula of Edmonds (1957, p. 101),
and a hypergeometric expression given by Biedenharn & Louck (1981, p. 430).

Various equivalent analytical expressions are available for the radial integral {rl|c*||7'I").
We use here the hypergeometric expression (4.37), which is evaluated using Horner’s rule, and
works well when /=, as in the present problem. However, when [ # [’ the hypergeometric
function can have negative integers in the denominator larger than those in the numerator. To
be able to compute the integral for these cases, and to validate the results in others, a second
program has been written using an alternative expression given by Exton (1978, p. 106).

Finally, the Sonine polynomials in the Burnett function are best computed using the
expression (Exton 1978)

SOx) = [(r+s) /s K [—7r/(s+1);x], (5.1)
or, alternatively, by using the recursion relation (Abramowitz & Stegun 1964, p. 782)
(r+1) 82, (x) = 2r+s+1—x) SP(x) — (n+5) SP, (x) (5.2)

with $P(x) =1 and P (x) = 1 +s5—x.

6. SOLUTION OF NONLINEAR SYSTEM
6.1. The system

We have seen in §2.4 that retaining N terms in the expansion (2.21) results in the set of
(N+1) equations
vo=C,vov, (a=1,...,N), (6.1)

Vv, = Pvov, + Qv v, (yv,a,f=1,...,N), (6.2)

subject to the boundary conditions
{Va(_w;N)} = {1’0707"')O}L)
{v,(+o0;N)}={0,1,0,...,0} («=0,1,2,...,N). (6.3)

The set (6.1) and (6.2) belongs to the class of generalized matrix Ricatti equations (see, for
example, Kerner 1981), about which very little analytical information is available. Such
equations have been encountered outside kinetic theory (for example, when the Navier—Stokes
equations are Fourier-discretized), but the conditions (6.3) are unusual, as they imply that the
two vectors in (6.3) are equilibrium points in the (N4 1)-dimensional phase space
corresponding to the equations (6.1) and (6.2). The solution v (x; N) is represented by a phase
orbit that joins the cold- and hot-side equilibrium points, i.e. is heteroclinic (see, for example,
Smoller 1983).

For the purpose of numerical solution the system (6.1) and (6.2) cannot be considered as an
initial value problem because the data are given only at equilibrium points, where all the
derivatives vanish, so one cannot numerically ‘march’ out of them. The problem cannot be
considered as a boundary value problem either, because there are 2(N+1) boundary
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conditions for only (N + 1) equations! In the next section we discuss our method of solution in
the presence of these peculiarities.

A major part of the computational effort is spent in evaluating the right-hand side of (6.1)
and (6.2). Some economy can be effected by exploiting the fact that v, v, = v,v,. For example,

for N = 2,
Q:iv, Ve = @ Vit (Qra+ Qo) vy Vo + Quy v

=Qo, (n=1,2,3), (6.4)
where g, =V

i Vo and Q is a (2x3) matrix. The N? terms corresponding to & = 1 to N,
B =1 to N have been replaced by the $N(N+1) terms corresponding to # = 1 to sN(N+1).
(A similar process done on the matrix J%, would result in a matrix JZ) The latter terms have
been relabelled by a single index u. Given the (N+ 1)-vector v, we first evaluate the ;N(N+1)-
vector o, and premultiply it by the matrix @, which is iNx N(N+1).

6.2. Method of solution

The strategy we have adopted is to start close to one of the equilibrium points, say the cold
side, and march in x until the hot-side equilibrium point is nearly reached, using, say, a
Runge-Kutta integrator. The success of this simple method depends crucially on the
topological nature of the target equilibrium point in phase space (see Arrowsmith & Place
(1982) for a good discussion of phase space geometry). If the point happens to be a sink (‘stable
node’), then the orbits approaching it converge, any initial error is attenuated, and the method
obviously succeeds. If the point is a saddle even very small initial errors grow and the orbit
eventually diverges away from the equilibrium point; the situation is ‘unstable’ and
the method fails. The topological nature of the equilibrium points easily follows from the
eigenvalues of the jacobians of the equations (6.1) and (6.2) at these points. If all the
eigenvalues are of the same sign, the point is a sink (or a source) ; it is a saddle-point otherwise.

For N =1, the equations are

vy = Cyvgvy, ¥y =Pi(1)vyvy, (6.5)

where C; = —3.122195 = — Pj(1). The solution to this set is the familiar tanh profile
v, = 3[1—tanh (3C, x)], v, = 3[1+tanh (3C, x)]. (6.6)

By virtue of the conservation laws v (x;1) = v (x;2) v, = (x;3), i.e. the N = 1 solutions are
as good as those for N =2 and N = 3.
For N = 4, the hot-side equilibrium point is a sink as the jacobian there has the eigenvalues

{A(N)} = {—3.1222, —4.9120, 0,0, 0}*. (6.7)

(Notice that the zero eigenvalues are a consequence of the redundancy in the equation set
owing to the conservation laws as discussed in §4.5.) We choose {v,} = {1 —¢,¢,0,0,0}" (¢ =
107®) as the initial condition and march forward in x. =

The eigenvalues for N = 6 are

{A(N)} = {7.8207,5.0460,0.7838,0.1369, 0,0, 0}*. (6.8)

Different initial conditions now lead to slightly different solutions, so after trial and error we
retain the one that keeps the beam-intensity positive, which is physically necessary.
The solutions for N =1, 4, and 6 are shown in figure 5.
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FiGurke 5. (a) Plots of the computed solutions with single mode. (5) Plots of the computed solutions
with four modes. (¢) Plots of the computed solutions with six modes.

All higher truncations (we have tried up to N = 12) lead to saddle-points on both sides of
the shock, and hence cannot be solved by an initial value technique.

7. RESULTS AND DISCUSSION

We now discuss in turn the results obtained on the shock structure, the shock thickness and

the distribution function.
7.1. The shock structure

The lowest-order solution v,(x;1) is known analytically as the tanh profile (6.6) and is
identical with that suggested by Sakurai (1957) and that determined by Narasimha &
Deshpande (1969) as the least-squares solution for the Mott-Smith ansatz. Figure 6 shows the
number density profile with inclusion of more modes. It is seen that with six modes the profile
has converged over almost the whole shock, the exception being the tail on the cold side: the
present solutions (with more than one mode) show a distinct asymmetry in the form of such
a tail, in contrast to the Mott-Smith solutions which are always symmetric in x. The asymmetry
coefficient, which may be defined as the departure from unity of the ratio of the areas from the
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Ficure 6. Profiles of the reduced density 7 = (n—n,)/(n,—n,) obtained from the three computed solutions.
——————————— , one mode; ———-—, four modes; ——, six modes.

midpoint of the density profile to the respective asymptotic state on either side, is 0, 0.14 and
0.28 for one, four and six modes respectively. The tail is not as pronounced as in the BGk
salutions of Liepmann et al. (1962), but this is understandable in the light of the analysis of
Narastmha (1968). who showed that the tails are more pronounced for softer molecular
potentials. We also note that with the inclusion of more modes the shock is distinctly thicker
than the single-mode profile.

A Monte Carlo simulation at a Mach number of 100, kindly carried out by G. A. Bird
(personal communication), leads to results ‘in reasonably good agreement’ with the present
theory. However, an explicit comparison between the present results and Monte Carlo
calculations is not given here, as (for reasons not yet understood) all Monte Carlo codes do not
give the same results (D. Chapman, personal communication).

The temperature profile is shown in figure 7a. The cold side now has a more pronounced
tail than the density profile, as seen in other solutions, but there is no sign of a temperature
overshoot on the hot side, as reported, for example, by Lohn & Lundgren (1974). However,
the temperature profile has not yet converged with six modes: the separation between the
midpoints of the normalized density and temperature profiles is 3.2, 3.9 and 5.2 hot-side mean
free paths with 1, 4 and 6 modes respectively.

1.0

[ (8) 7
//
4
Vi
4
4
0.5 I~ /
/]
///
7
/ /
7,7
s
0l =—24-7 1 1 I == | L L
-10 0 10 -10 0 10
x/ A,
Ficurke 7. (a) Profiles of the normalized temperature 7' = 7/ T,. ——————————— , one mode ; ——-——, four modes;
, six modes. (b) Profiles of the normalized hydrostatic pressure p = (p—p,)/(p,—p,). ——————————— , one

mode; ——-—— four modes; , six modes.
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The hydrostatic pressure (see figure 74), which is not so sensitive as the temperature, has
converged over a region close to the hot side.

The normal stress o, being linearly related to the velocity, provides no new information.

The deviatoric stresses 7, and 7, (figure 8) have converged only over a region on the hot
side of the shock. So also the heat flux (figure 9), which shows a peak at the middle of the shock
and a marked tail on the cold side.

0.5 (a)
- zz
=~
/; AN
0 —-‘=’-\i::: ==
RSN P>
== Ty
-0.5 ' ' I 0 | 1
-10 0 10 -10 0 10
x/ Ay

FiGure 8. (a) Profiles of the stresses (positive value stands for compression). (b) Profiles of the
effective viscosity scaled by the Chapman—Enskog value on the hot side.

r

Ficure 9. Profiles of effective heat-conductivity scaled by the Chapman-Enskog value on the hot side.

The Chapman-Enskog theory for hard-spheres gives the following expressions for the heat-
conductivity and viscosity (see Chapman & Cowling 1939) in the scales chosen in §2:

u = 1.01600 (5/16) [ T/},
k=1.02513(75/64) [ T/l

As a matter of possible interest, we show in figure 85 and figure 94 the effective viscosity and
conductivity implied by the present six-mode solution. Although there is no satisfactory
convergence yet in the ratio of the flux to the corresponding gradient, it is interesting that
the heat conductivity from the present four- and six-mode solutions is always finite, unlike the
Mott-Smith solution which makes it infinite on the hot side. Neither the conductivity nor the
viscosity shows any trend of convergence towards the Chapman—Enskog values anywhere in
the shock, including the hot and cold sides.
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7.2. The shock thickness

As the number density profile has converged over the whole shock excepting the cold-side
tail, the density slope shock-thickness from the present solutions is of interest. This has the value
of 5.6924, in the lowest-order solution, rises to 6.6714, with four modes and falls to 6.6624,
with six modes (a rise of 18 %, and a fall of 29,). There is therefore reason to believe that we
have a converged value of the density-slope shock thickness, of about 6.74,. This value is
compared with experimental determinations and other theories in figure 10 taken from
Narasimha & Deshpande (1969), who showed that if the hot-side mean free path is taken as
the scaling length the thickness is not very sensitive to the molecular model. The agreement
with experiment can be considered good, although (because of uncertainties in the molecular
model for a given gas) the hot-side mean free path cannot always be satisfactorily determined.

) w=0.816 _
Navier mE I -
0'2_stokes”/;;/ 0.75
/yL &H R Present result
/ e
g: ,’II e c -
3 i
S0
| | | | | ]
01 5 9 13

Ficure 10. Present prediction of shock thickness compared with the experimental values and prediction by other
theories; ——, minimum total error solution of Narasimha & Deshpande (1969); —:—-—, Mott-Smith 2
moment value with w = 0.816 (4 ~ T*). Hatched areas represent experimental data; L & H, Linzer & Hornig
(1963); C, Camac (1965); R, Russel (1965).

7.3. The distribution function

We finally present, in figure 11, some cross sections at ¢, = 0 (component of molecular
velocity perpendicular to the flow) of the distribution function at the x-stations marked. 10, 7
and 4 in figure 6. At station 10, the regular part / of the distribution function coincides for all

P s
B AN
B AN
& :::33‘;;;;""0’0“\\\\\\‘s S

L GRS

F1GURE 11. (a) Surface views of the regular parts of the distribution function at the location marked 7 in figure 6;
single mode. (b) Surface views of the regular parts of the distribution function at the location marked 7 in figure
6; four modes. (c) Surface views of the regular parts of the distribution function at the location marked 7 in
figure 6; six modes.
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the three truncations (one, four and six modes). At station 7, differences are noticeable, but the
regular part always resembles a maxwellian. This is clearly seen in figure 12 which shows
isometric views of the ‘background’ distribution at this station. The deviation from the hot-side
maxwellian, which has been absorbed in the polynomial expansion, remains small. At station
4, which is in the cold tail, there are small regions of velocity space where the distribution
becomes slightly negative.
Contrary to previous speculation (see, for example, Grad 1969), solutions with up to six
P modes show no double peak in the regular part of the distribution function, hence f remains
f essentially bimodal.

—

< — 8. CoNCLUSION

S = We have endeavoured to show in this paper that a spectral technique for handling the

e E nonlinear Boltzmann equation is entirely feasible even when the nonlinearity is extreme,

2o @) provided the basis of the spectral expansion and its centre are properly chosen. A ‘proper’

E ) choice appears to have been found for the infinitely strong shock, if we may go by the fact that
v

the shock thickness with six modes is only about 17 %, higher than with only one mode; this
may be contrasted with reported differences of +459% and —209, respectively when
modifications of the Mott-Smith distribution were attempted in the earlier studies of Holway
(1965) and Lohn & Lundgren (1974). Nevertheless, more conclusive evidence of the
convergence of the present scheme is desirable, especially for higher moments of the
distribution. This demands at the present stage more effective methods of handling high-

PHILOSOPHICAL
TRANSACTIONS
OF

dimensional nonlinear dynamical systems subject to the unusual boundary conditions of the
shock problem.

It is expected that the powerful tools developed here for computing the collision integrals can
be exploited for handling other problems in hypersonic rarefied gas dynamics, and in those
involving less severe departures from equilibrium. These are now the subject of further
investigation by the authors.

It needs to be emphasized that in spite of the use of the Burnett basis, the present scheme is
totally different in spirit from that of the classical Burnett expansion, and not only because the
centre of expansion is not local equilibrium. Thus, no constitutive relations are inherent in the
present work. Table 1 shows that while the first three modal amplitudes determine density,
velocity and temperature, the stresses and the heat flux involve the first four and five

A

amplitudes respectively, and can therefore never be expressed entirely in terms of the first three

— or their derivatives). Furthermore, the present work does not involve proceeding from an
< p p g

> > Euler-dominated equation of change in a first approximation as the classical Chapman-
@) E Enskog—Burnett procedure does.

e Indeed, the present method is best seen as replacing the Boltzmann equation by an
O equivalent nonlinear dynamical system. This provides an alternative picture of molecular gas
— dynamics, in which inter-particle collisions are replaced by modal interactions. The modal

picture has several attractive features: it replaces the infinitely many particles with a non-
denumerable triple infinity in argument (namely the molecular velocity) by a denumerable
triple infinity of modes. An apparent disadvantage is that when two modes interact there result

(in general) an infinity of modes, whereas two colliding particles remain two after (elastic)
collision. What is conserved in modal interaction is not number, but symmetry; it is for this

reason that group theory plays a key role in the modal picture. At first sight the proliferation
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of modes after interaction may seem disturbing, but two factors limit the proliferation: first the
selection rules required for symmetry conservation, and second the rapid decrease in modal
interaction coefficients for ‘distant modes’, which therefore do not make a significant
contribution to the solution. Indeed, there is the distinct possibility that reasonable solutions
may be obtained for low-order moments considering only a relatively small number of modes.

This work was begun during a visit by R.N. to the University of Strathclyde in 1971-72, its
completion was helped by short visits to Caltech during 1986 and 1987. He thanks his hosts,
Professor D. C. Pack and Professor D. S. Butler at Glasgow and Professor H. W. Liepmann
and Professor A. Roshko at Pasadena, for their encouragement and hospitality. The authors
are grateful to Professor Graeme Bird and Professor Dean Chapman for sharing with them the
results of their unpublished Monte Carlo calculations.

APPENDIX A. ORDERING OF THE BURNETT FUNCTIONS

Although the Burnett functions are naturally labelled by a triplet of indices i = (r,1,m), it is
convenient to associate the triplet with a unique singlet a that corresponds to the order in which
we wish to include more terms in the expansion (2.22). Because it is natural to exhaust
polynomials of a given degree p = 27+ before introducing those of a higher degree, we choose
to order these functions first according to the value of p. For each p we suborder them in
increasing /, and in m for each / from —/to +/. In the plane shock problem we are considering
the azimuthal indices m are zero owing to the symmetry around the x-axis. Table 2 indicates
the correspondence for the first five indices with m = 0. A general expression for «, again with

a=p+H(p+1)5(p—2) +3E(p— D1 B+ (=) N+ [ +1,

where the [x] stands for the integer part of x.

m=0, is

TaABLE 2. CORRESPONDENCE FOR THE FIRST FIVE INDICES WITH m =

triplet degree single index

WML~ O
C)'IF'PCQI\D)—L|

The inverse transformation (Sirovich & Thurber 1965) is
ple) = 2[(— 1+ 4+ 1)) +3(1+(—)9,
r(@) = —j+ o) (] +2) + B+ (=)0 E(p+ 1),
l(a) = pla) —2r(a),
where glo) =3(1+sgn{j— Vi1 —[VJ]), j=a—1;

¢ is zero when the function is odd, and one when it is even.
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